
Descending motions in viscous liquids

How can one describe / model / predict / understand
various descending motion patterns related to

Falling leaves and snowflakes

Falling business cards and paper strips

Spread of seeds from trees as they fall

Flying insects and birds

Descending airplanes

Amazingly, there is still no satisfactory simple physical
explanation of the observed motions.



Descending motion of a ball

Galileo Galilei hypothesize: “A body would fall with a strictly
uniform acceleration, as long as the resistance of the medium
through which it was falling remained negligible.”

How did he discover this? What would he observed if he really
dropped balls of the same material, but different masses, from
the Leaning Tower of Pisa?

What really happens with a heavy ball dropped to fall in still air?

The air-resistance force increases approximately proportionally
to the square of the speed and reaches the magnitude of the
the weight force. After that, the body falls with a constant
terminal velocity.
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Experiments

When the body is lighter and has a more complicated shape,
other aerodynamic forces are created by the air and they
influence the motion!



Some of possible falling patterns



Possible falling patterns
If the body is shaped as a thin plate, there are 5 possible

descending patterns:



Forces in the air, the case of steady flow

Lift: the force orthogonal to the direction of the motion

Drag: the resistance force directed against the motion

Weight: the vertical gravitational force

Added mass effect: the air is partially glued to the object
effectively changing its mass / buoyant (Archimedes) force
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The flow is quit mysterious...



Possible Theoretical Modeling Approaches

Solving Full Navier-Stokes equations:
Computationally very expensive
Sharp corners are not allowed
How to extract relevant physics?

Deriving Exact Models with Simplified Assumptions:
Possible to obtain analytic results if the model is simple
enough!
Seems to be impossible to take into account viscosity,
gravity, etc.

Obtaining Phenomenological Models:
Approximate lift, drag, etc. phenomenologically
Can include all relevant forces!
How to justify that the model is adequate?



Model by Andersen, Pesavento, Wang (2005)

(m + m11)v̇x′ = (m + m22) θ̇ vy ′ + Liftx′ − m′ g sin(θ) + Dragx′ ,

(m + m22) v̇y ′ = −(m + m11) θ̇ vx′ + Lifty′ − m′ g cos(θ) + Dragy′ ,

(J + Ja) θ̈ = (m11 − m22) vx′ vy ′ + Liftτ + Dragτ ,

where m = ρshl , m′ = (ρs − ρf )hl , and J = ρshl(l2 + h2)/12.



Model by Andersen, Pesavento, Wang (2005), [cont’d]
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(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + Lifty′ − m′g cos(θ) + Dragy′ ,

(J + Ja)θ̈ = (m11 − m22)vx ′vy ′ + Liftτ + Dragτ ,

Assumption 1: the added masses can be computed as for
the steady (turbulence-free) flow:

m11 ≈

π

4
ρf h

2, m22 ≈

π

4
ρf l

2, Ja ≈

π

128
ρf (l

2
− h2)2.

Assumption 2: Lift (aerodynamic force orthogonal to the
motion) and Drag (aerodynamic force parallel to the
motion) depend on velocities only (as in the case of
steady flow with small angles of attack).

To complete the model, Lift and Drag can be approximated
along the steady-state motion experimentally via curve fitting!
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Validation of the model

By construction, the experimentally recorded steady-state
behavior approximately satisfies the differential equations.
However, to validate the model, the following must be verified:

Is it possible to recover the other observable motions?

Are all these motions attract trajectories initiated on a
reasonable distance — exponential orbital stability &
regions of attractions.

Qualitative changes in behavior are not implied by
reasonable variations in parameters — robustness with
respect to physical parameters.

Qualitative changes in behavior are not implied by
sufficiently small “improvements” in approximations for Lift
and Drag — robustness with respect to persistent
excitations.
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Validation procedure

Let us introduce the following notation

∆p1 is a vector of small deviations in the values of the
physical parameters.

∆p2 is a vector of small parameters defining a family of
possible mismatches in the experiment-based descriptions
of the Drag and the Lift.

We have developed a computational procedure for derivation of
a dynamic description for time evolutions of the 5 elements of a
vector ζ(t) defining deviations of the 6 states (x , y , vx ′ , vx ′ , θ, θ̇)
of the system from the nominal orbit in the form:

d
dt

ζ(t) = A
(

t , ∆p1, ∆p2
)

ζ(t) + B
(

t , ∆p1, ∆p2
)
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Outcome for the validation procedure

The following can be deduced analyzing the equation

d
dt

ζ(t) = A
(

t , ∆p1, ∆p2
)

ζ(t) + B
(

t , ∆p1, ∆p2
)

If B
(

t , 0, 0
)

≡ 0, the target periodic solution exists.

If the transition matrix for A
(

t , 0, 0
)

is Hurwitz, the target
periodic solution is orbitally exponentially stable.

If the solutions stay in a vicinity of the origin, for
sufficiently small ∆p1, we have robustness with
respect to physical parameters.

If the solutions stay in a vicinity of the origin, for
sufficiently small ∆p2, we have robustness with
respect to persistent excitations, i.e. to the modeling errors.
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